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Abstract  20 

Anthropogenic emissions within urban environments are characterized by spatial 21 

heterogeneity and temporal variability that present challenges for measuring urban greenhouse 22 

gases and air pollutants. To address these challenges, we mounted instruments on public transit 23 

light-rail train cars that traverse the metropolitan Salt Lake Valley (SLV) in Utah, USA to 24 

observe the temporal and spatial variability of atmospheric species including carbon dioxide 25 

(CO2), methane (CH4), ozone (O3), fine particulate matter (PM2.5), and nitrogen dioxide (NO2). 26 

Utilizing electrified light-rail public transit as an observational platform enables real-time 27 

measurements with low operating costs while avoiding self-contamination from vehicle exhaust. 28 

We examine temporal averages and case studies of each species that reveal gradients, 29 

intermittent point sources, seasonal and diel changes, and complex relationships resulting from 30 

emissions, atmospheric chemistry, and meteorological conditions. CO2 and NO2 are related 31 

through the combustion of fossil fuel and we observed a broad spatial gradient across the city as 32 

well distinct plumes at traffic intersections and, for NO2, a large plume adjacent to a locomotive 33 

rail yard. Distributions of O3 were strongly correlated with NO2 due to atmospheric 34 

photochemical and titration processes. Episodes of high PM2.5 had distinct spatial patterns 35 

depending on meteorological conditions during wintertime persistent cold-air pool episodes. The 36 

spatial pattern of CH4 was characterized by distinct plumes associated with industrial and 37 

commercial facilities, some of which followed temporal patterns indicative of daytime working 38 

hours; other plumes were persistent throughout the whole day, suggestive of leak-related fugitive 39 

emissions. The ongoing multi-year record of spatial and temporal air quality observations 40 

provides a valuable data set for future air quality exposure studies. Our results suggest pollution 41 

and greenhouse gas emission monitoring and exposure assessment could be greatly enhanced by 42 

deploying instruments on public transit systems in urban centers worldwide. 43 

 44 

 45 

  46 
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1. Introduction 47 

Trace species in the atmosphere have a wide range of impacts including climate change, 48 

health, and ecosystem impacts. Metropolitan areas are characterized by concentrated emissions 49 

and large intra-urban spatiotemporal variability of greenhouse gases (GHGs) and pollutants 50 

(Baldauf et al., 2008; Christen et al., 2011). Poor urban air quality leads to impacts on human 51 

health (e.g. respiratory, circulatory, cancer, mortality, etc. (Di et al., 2017; Landrigan et al., 52 

2017)) as well as cascading economic impacts (e.g. health care costs, decreased worker 53 

productivity, etc. (Zivin and Neidell, 2018)) and environmental impacts (e.g. O3 injury to plants, 54 

viewshed impacts from haze, etc. (U.S. EPA, 2013)). Detailed observations and models are 55 

needed to resolve the intra-urban environment in order to link human health impacts to pollutant 56 

variability and to investigate the anthropogenic, chemical, and meteorological factors controlling 57 

the variability in urban GHGs and pollutants as cities are growing (Gurney et al., 2015; Park and 58 

Kwan, 2017; Venkatram et al., 2009). While models of emissions have improved in temporal and 59 

spatial resolution (e.g. (Gurney et al., 2009; Hoek et al., 2008; Pouliot et al., 2012) the ability of 60 

current urban monitoring networks to provide constraints for these models remains limited (Air 61 

Quality Research Subcommittee, 2013; Hutyra et al., 2014). 62 

Currently, numerous observational configurations exist to monitor ambient concentrations of 63 

trace species across urban areas for research or regulatory purposes. Examples include monitors 64 

for U.S. Environmental Protection Agency (US EPA) Criteria Air Pollutants to comply with the 65 

regulatory requirements of the Clean Air Act, or the National Oceanic and Atmospheric 66 

Administration’s Global Greenhouse Gas Reference Network that is used to conduct research on 67 

the global carbon cycle. These observations, located at fixed sites, have been maintained for 68 

decades with high precision and accuracy, and have resulted in numerous insights into health 69 

consequences of pollutants (Correia et al., 2013) or the impacts of trace species on global climate  70 

(Le Quéré et al., 2016). However, sparse networks of stationary sites are intended to monitor air 71 

quality across large spatial scales (regional or counties) and cannot resolve spatial 72 

heterogeneities that are known to exist within urban environments. 73 

As atmospheric monitoring instrumentation decreases in size and cost, the paradigm for 74 

urban air monitoring has evolved to include higher spatial resolution (Kumar et al., 2015; Snyder 75 

et al., 2013). It has become possible to deploy dense networks of temporary or permanent fixed 76 

sites that can resolve intra-urban spatial patterns (e.g., (Deville Cavellin et al., 2016; Jiao et al., 77 
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2016; Matte et al., 2013; Shusterman et al., 2016). These dense networks typically consist of 78 

many instruments that present maintenance and calibration challenges over time (Borrego et al., 79 

2016; Kelly et al., 2017; Miskell et al., 2016; Thompson, 2016). In the last several years, a 80 

proliferation of low-cost sensors driven by citizen science initiatives and the rapid development 81 

of micro-sensor technology has dramatically increased air quality data collection across urban 82 

landscapes, but more research on how to calibrate these low-cost sensors with research-grade 83 

instrumentation is needed (Barakeh et al., 2017; Clements et al., 2017; Zimmerman et al., 2017).  84 

Assessing intra-urban spatial patterns has also been undertaken for research applications by 85 

deploying sensors on mobile platforms (Gozzi et al., 2016) such as automobiles, aircraft, and 86 

bicycles (e.g., (Apte et al., 2017; Hopkins et al., 2016; Lee et al., 2017; Mays et al., 2009; Van 87 

den Bossche et al., 2015). While mobile platforms improve spatial coverage, labor costs are often 88 

considerable, limiting the long-term deployability of such mobile platforms. Hence, it is difficult 89 

to conduct manned mobile monitoring campaigns to assess changes over time or to characterize 90 

the impact of intermittent emissions on ambient concentrations without considerable cost. While 91 

both mobile and stationary sampling approaches have benefits and challenges, a well-defined 92 

best practice for sustained monitoring at fine scales of urban atmospheric trace species has 93 

remained elusive.  94 

Here we present a new project that facilitates routine real-time monitoring of intra-urban 95 

atmospheric trace species using research grade instruments mounted on public transit light-rail 96 

vehicles that transect the Salt Lake Valley (SLV) metropolitan area at routine intervals. To our 97 

knowledge, only a few mobile urban observation networks leveraging public transit currently 98 

exist worldwide: Zurich, Switzerland (Hasenfratz et al., 2015); Karlsruhe, Germany (Hagemann 99 

et al., 2014); Oslo, Norway (Castell et al., 2015); and Perugia, Italy (Castellini et al., 2014). Each 100 

of these projects have different experimental designs with a different suite of measurements, and while 101 

their utility is still being explored, it has been shown that public transit based monitoring can be used to 102 

create high-resolution maps of air pollution across urban areas (Hasenfratz et al., 2015). Our study is 103 

the first effort to utilize public transit for urban observations of trace species in North America. 104 

Starting in December 2014, we partnered with the Utah Transit Authority (UTA) and installed 105 

instrumentation to measure carbon dioxide (CO2), methane (CH4), ozone (O3), and fine 106 

particulate matter (PM2.5) in a secure box on the roof of an electrically-powered light-rail public 107 

transit train (aka “TRAX”). A second suite of sensors on another TRAX train car was added in 108 
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February 2016. Basic meteorological parameters (temperature, relative humidity, and pressure) 109 

were also measured. Additionally, temporary installations of instruments that measure black 110 

carbon and nitrogen dioxide (NO2) were deployed for short periods. To facilitate public 111 

engagement, real-time data were transmitted to University of Utah servers every five minutes 112 

and made accessible via web-based visualizations (http://air.utah.edu/ and 113 

http://meso1.chpc.utah.edu/mesotrax/).  114 

The SLV, with a population of just over 1 million people, experiences on average 40 days 115 

annually of pollutant levels (including both summer and winter pollutant episodes) exceeding the 116 

U.S. National Ambient Air Quality Standards (NAAQS) resulting from a combination of 117 

meteorological patterns, topography, and emissions. In the winter, elevated levels of PM2.5 result 118 

from emissions accumulating in persistent cold air pools (PCAPs; locally known as temperature 119 

inversions). On average, 6.8 PCAPs occurred each winter, with an average duration of 3.1 days, 120 

that exceeded the NAAQS for PM2.5 of 35 µg m-3 on average 18 days per winter, however with 121 

considerable interannual variability (Whiteman et al., 2014). During winter, the maximum 122 

(minimum) temperatures were 3.5 (-6) °C and average snowfall was 110 cm. The snow cover 123 

reflected incoming radiation, maintaining cool surface temperatures and enhanced nocturnal 124 

surface radiative cooling, resulting in stronger wintertime PCAPs when snow cover was present. 125 

During summer the average maximum (minimum) temperatures were 32 (16) °C, but there were 126 

frequent high-pressure ridges over the Western US that resulted in prolonged periods of elevated 127 

heat and stagnation. These meteorological conditions, in combination with urban precursor 128 

emissions and wildfire smoke, led to the photochemical production of elevated ground level O3 129 

that exceeded the NAAQS for O3 of 70 ppb on average 22 days per year (Horel et al., 2016). 130 

Public awareness of the health risks associated with summertime O3 is less than for wintertime 131 

PM2.5 because O3 is invisible, and high concentrations are often accompanied by fair weather. 132 

Episodic air quality reductions also result from dust storms and wild fires several times each year 133 

(Mallia et al., 2017, 2015; Steenburgh et al., 2012). As a result of all of these factors,  intense 134 

public interest in improving air quality exists, as demonstrated by the 2016 Utah Foundation 135 

survey of voter’s concerns that found air quality among the public’s most pressing issues 136 

(Bateman et al., 2016).  Finally, because of the number of NAAQS exceedances, The Utah 137 

Division of Air Quality (DAQ) is currently engaged in developing a State Implementation Plan 138 

(SIP) to improve air quality to bring the state into compliance with the Clean Air Act.  139 
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In addition to air quality concerns, Salt Lake City has adopted aggressive greenhouse gas 140 

emission reduction targets (Salt Lake City Corporation, 2016) that, if successful, will result in 141 

observable reductions in concentrations of GHGs in the city in the coming years. Many other 142 

public and private stakeholders are also engaged in GHG mitigation efforts as well. 143 

Several complimentary resources are available that could assist in evaluating and utilizing the 144 

TRAX based observations.  These include a high-density meteorological observation network 145 

(Horel et al., 2016), a GHG monitoring network (Mitchell et al., 2018), a growing low-cost 146 

citizen-science led network of air quality monitors (Kelly et al., 2017) 147 

(https://www.purpleair.com/), a small network of research-grade fixed air quality monitoring 148 

stations (Baasandorj et al., 2017), and detailed emissions models (Patarasuk et al., 2016). The 149 

combination of poor air quality, wide ranging interest from the public, stakeholders, 150 

governments and regulators, as well as several complimentary resources make the SLV a unique 151 

testbed for evaluating a public transit based atmospheric observation system (Lin et al., in press). 152 

In this paper our main goal is to provide an overview of an ongoing light-rail public transit-153 

based observation project that has measured air pollutants and GHGs across an urban area at 154 

high resolution for the past 3 years. We describe our experimental design, present examples of 155 

how these observations can be utilized, and discuss future directions for mobile observations 156 

deployed on public transit platforms. 157 

 158 

2. Materials and Methods 159 

2.1. TRAX Light Rail Network 160 

The SLV contains the state capital, Salt Lake City, and is located within Salt Lake County, 161 

Utah in the inter-mountain west of the continental U.S. (Figure 1). It is bounded by the Wasatch 162 

and Oquirrh Mountains on the east and west sides of the valley, the Traverse Mountains to the 163 

south, and the Great Salt Lake to the northwest. The TRAX light rail train network consists of 164 

over 145 electric trains servicing three lines (Red, Green, and Blue) along 94 km of rail track that 165 

provide coverage across the SLV (Figure 1). Urbanization along the rail lines varies from dense 166 

urban downtown regions to suburban and rural settings, and the train travels on and off major 167 

roadways. TRAX operates an older model of rail car on the Blue line, so our data are almost 168 

exclusively from the Red and Green lines. Along the Red and Green lines there are 25 and 18 169 

passenger stops, and it takes 60 and 46 minutes, respectively, to complete a transect on each line. 170 
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In addition to the spatial coverage, the Red line also provides a 225 m pseudo-vertical profile 171 

from the valley floor (1,285 m) to the surrounding mountain foothills (1,510 m). Each TRAX 172 

train car covers 18-24 transects when operating for a full day (approximately 18 hours from 5 173 

AM to midnight). During the period December 2014 – April 2017, the trains have been deployed 174 

760 days comprising 10,300 transects (averaging 14 transects a day and deployed 61% of days, 175 

or ~4 days a week). When the trains were not in operation, they were often parked outside and 176 

therefore became periodic stationary observation sites that provided additional observations. 177 

Several complementary stationary GHG and air pollutant stations were located in close 178 

proximity to the TRAX route that can be used to evaluate the TRAX based measurements. This 179 

includes the DAQ Hawthorne site as well as several University of Utah air quality and GHG 180 

monitoring sites (Figure 1). 181 

 182 

2.2. Instrumentation Set-up 183 

Two TRAX trains (numbered 1136 and 1104, hereafter TRAX 1 and 2) were outfitted with 184 

sensors to measure air quality, GHGs, and meteorological parameters. Electrified trains are an 185 

ideal platform for air sampling because they have zero direct emissions and often run 186 

continuously throughout the day. The trains have electric circuitry on their roofs in steel 187 

weatherproof boxes, and our instruments were installed in one of the spare boxes (dimensions 188 

1.5 m x 0.5 m x 0.5 m). The sample inlets extended 0.5 m above the top of the train through a 189 

pipe protruding from the metal box topped with a vent cover and were 4 m above ground level. 190 

AC power was provided with a connection into the cabin accessory outlets. Two generic 191 

computer fans provided cooling for the instruments in the box in the summer. Table 1 lists the 192 

equipment installed on the TRAX trains, their sampling frequency, and their measurement 193 

accuracy as reported by the equipment manufacturers. The Campbell Scientific CS215-L 194 

Temperature and Relative Humidity probe and CS106 Barometer were used for the 195 

meteorological parameters. Data were recorded by a Raspberry Pi based data logger (which also 196 

controlled a valve systems for hourly automated GHG calibrations) and a Campbell Scientific 197 

data logger (CR1000). The observations were transmitted to University of Utah servers via 198 

cellular communications every 5 minutes. Figure 2 summarizes the temporal data coverage by 199 

species between the start of the project through April 2017. Gaps in the data resulted from a 200 

variety of factors including train maintenance, instrument maintenance, and periods when 201 
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instrument calibration parameters were unknown or unavailable (Figure 2). A greater number of 202 

train transects per month occurred when we requested enhanced observations during intensive 203 

field campaigns (e.g., summer 2015 and winter 2017), while decreased numbers of train transects 204 

per month occurred when the trains were undergoing maintenance.  205 

To examine the mean variability in GHG and air pollutants over various time periods (e.g., 206 

average summertime O3, or annual GHGs), we calculated averages along the rail track using 207 

available transects during these periods. This was carried out by creating a track of 208 

approximately equally spaced (~35-40 m) points along each of the train lines. Then for each 209 

transect of the train from one end of a line to the other, the data were assigned to the nearest 210 

equally spaced point along the track. Since the spacing of the points is suited for a 1-Hz sampling 211 

frequency, we linearly interpolated the observations from the E-Sampler and 2B Ozone monitors 212 

to a 1-Hz sampling rate. If there were multiple observations at a single point (e.g. during a 45 213 

second stop at a station where passengers boarded the train), the observations were averaged, 214 

resulting in equal spatial extent for data along each train transect. These transects could then be 215 

averaged over selected temporal periods to create a spatially explicit, temporally averaged 216 

composite of the data. 217 

In order to correctly interpret the spatial observations, the GPS location data must be 218 

precisely synchronized with the atmospheric measurements. A time lag between the GPS and 219 

other measurements can arise from a misalignment in the clocks, but this was addressed by 220 

recording a common time stamp from the data logger to all of the data files. A secondary time 221 

lag can result from the amount of time it takes for a parcel of air to travel the length of the inlet 222 

tubing to the instrument. This was addressed empirically by identifying stationary features in the 223 

data (point source emissions, freeway, etc.) and specifying a time lag such that the feature occurs 224 

in the same place when the train was traveling in both directions (Figure 3). This led to a higher 225 

correlation between data averaged when the train was traveling in both directions. Time lags 226 

varied between instruments and with changes in tubing but were in the range of 1-15 seconds. 227 

Calibration of the GHG measurements was conducted hourly using a working reference gas 228 

tank with known near ambient CO2 and CH4 mole fractions tertiary to the World Meteorological 229 

Organization X2007 CO2 mole fraction scale (Zhao and Tans, 2006) and the NOAA04 CH4 mole 230 

fraction scale (Dlugokencky et al., 2005). The ozone monitors, which have been approved by US 231 

EPA as a Federal Equivalent Method (FEM), were calibrated from either the manufacturer or at a 232 
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DAQ facility, while the PM2.5 sensors were calibrated by the manufacturer approximately 233 

annually. The NO2 analyzer has an internal metal oxide scrubber that produces NO2-free air that 234 

provides a zero calibration every 30 minutes that were subtracted from the observations. Since 235 

this instrument was installed temporarily, the NO2 span was only calibrated twice during the 236 

year-long deployment with two different sets of calibration equipment. In both cased there was 237 

an excellent linear response (R2 > 0.99) but the slope of the line at the start of the deployment 238 

was 1.07 and at the end it was 0.88. We did not correct for this change over time because of the 239 

infrequency of the span calibrations and because of the different calibration equipment used. 240 

Thus, while there is likely a ±10% uncertainty in the absolute magnitude of the NO2 241 

observations, prior work has found that the span changes slowly over time (Brent et al., 2013), so 242 

the relative magnitude of the spatial patterns across the city are robust. 243 

 244 

2.3. Evaluation against stationary sites 245 

To evaluate our mobile measurements, we compared the TRAX observations to observations 246 

made at two stationary measurement sites located near the TRAX train lines (Figure 4). We 247 

evaluated the TRAX observations against the Utah Division of Air Quality (DAQ) Hawthorne 248 

site maintained by the state of Utah for US EPA regulatory purposes that is 2 km east of the train 249 

line along a section where the Red and Green lines overlap, as well as the University of Utah 250 

(UOU) site located 0.6 km north of the TRAX Red line in the northeast part of the SLV (Figure 251 

1). The goal was to provide representative comparisons and an overall sense of the robustness of 252 

the TRAX data. Future work should include more detailed comparisons and include fixed sites 253 

co-located next to the TRAX train line, depending on species of interest. 254 

For PM2.5 we compared the TRAX observations against the hourly DAQ measurements that 255 

utilized a FEM for the month of February 2016. This time period was chosen because there was a 256 

persistent cold air pool (PCAP) event and PCAP events tend to have a large dynamic range in 257 

PM2.5 and often do not have fine scale spatial variability (Baasandorj et al., 2017), as discussed 258 

in the PM2.5 results section below. Thus, for this time period, the TRAX measurements should be 259 

comparable to those at the DAQ monitoring station 2 km east of the train line. The TRAX 260 

observations were averaged over a 2.3 km long section of the train line as well as subsections 261 

where the train was moving and where it was stopped at two train stops. While the temporal 262 

spans of the measurements were different (a few minutes on TRAX vs. hourly average at DAQ), 263 



10 

 

this was the most accessible comparison to evaluate the TRAX measurements against a FEM 264 

monitoring station. We observed a good correlation for most of the month (circles); however, in 265 

the middle of the PCAP event the ambient relative humidity (RH) increased and caused the 266 

TRAX instruments to record anomalously high PM2.5 concentrations (triangles), due to 267 

hygroscopic swelling of particles, causing the nephelometer to overestimate the PM2.5 268 

concentration. The MetOne PM2.5 analyzers on the two trains both use onboard heaters to dry the 269 

air prior to measurement and we have found that they are unable to suitably dry the air when 270 

ambient relative humidity is greater than ~85%. These high relative humidity conditions were 271 

infrequent and are easily identified by comparisons with the DAQ monitor, so they did not pose 272 

a problem for our experimental design and we have removed these periods from the data set. The 273 

good agreement with high R2 values during normal operations exist regardless of whether the 274 

train was in motion or stationary, indicating that our experimental setup was not sensitive to the 275 

speed of the train (not shown). 276 

For O3 and NO2 we also compared the TRAX measurements to the hourly DAQ 277 

measurements. We examined these relationships for the entire year NO2 measurements were 278 

available (June 2016-June 2017) but found that the slope of the relationships changed during the 279 

winter, when oxidant titration could at times lead to complete titration of O3 (Baasandorj et al., 280 

2017).  Therefore, we excluded the winter months (November-February) from the comparison. 281 

For this comparison we again found high correlations (R2 ≥ 0.8) that give confidence in the 282 

TRAX-based mobile observations. 283 

For the GHGs we compared the TRAX measurements and those at the UOU site during a 284 

time period with good data coverage from June-October, 2015. We averaged the TRAX 285 

observations over a 1-km section of the track and compared them to the UOU observations over 286 

the same time period (~50 second duration). Both CO2 and CH4 measurements had high 287 

correlations (R2 > 0.8), indicating good overall agreement. The scatter in the comparisons is 288 

likely due to the proximity of local sources (traffic and fugitive CH4 emissions). 289 

 290 

3. Results and Discussion 291 

In the following sections, we provide examples of the observed variations in GHGs and 292 

criteria pollutants observed with the TRAX platform. Human and natural factors such as 293 

emissions from on-road, industrial and residential sources, as well as chemical processes, 294 
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meteorology, and topography affect the observed concentrations. The complex wind flow 295 

patterns and vertical stability owing to the unique meteorology and topography of the SLV 296 

control to a large degree the transport and mixing of trace species in the boundary-layer. The 297 

daily cycle of heating and cooling in a mountain valley combined with thermal contrasts between 298 

the Great Salt Lake and the SLV results, in the absence of strong winds associated with synoptic 299 

weather systems, in down-valley flow (from south to north) at night and up-valley flow (from 300 

north to south) during the day throughout the year (Blaylock et al., 2016; Crosman and Horel, 301 

2016; Horel et al., 2016). These thermally-driven circulation patterns combine with terrain-flow 302 

interactions (Lareau and Horel, 2015, 2014) and variations in boundary-layer depth (Whiteman 303 

et al., 2014; Young and Whiteman, 2015) to impact pollutant variability across the SLV. In 304 

addition, emissions and chemical reactions (e.g., point sources and the distance to roadway) 305 

within the complex urban landscape also drive patterns in trace species (Horel et al., 2016). All 306 

of the data shown in the figures and the native Google Earth KMZ files are included in the 307 

Supplementary Materials. 308 

3.1. Greenhouse Gases 309 

3.1.1. Carbon Dioxide (CO2) 310 

The average CO2 mole fractions in the SLV from available transects during the duration of 311 

the project (December 2014-April 2017) shows spatial patterns across roadway, neighborhood, 312 

and urban scales (Figure 5a). Across the metropolitan region, CO2 mole fractions were higher in 313 

the urban center and along the north-south urban corridor in the center of the SLV while lower 314 

mole fractions were visible along the urban periphery and were lowest in the southwestern SLV 315 

near the edge of the suburban margin of the urbanized area. This mole fraction gradient pattern 316 

(sometimes referred to as an ‘urban dome’ (Idso et al., 2001); however this terminology can be 317 

misinterpreted because the measurements are all at the surface and do not characterize vertical 318 

distributions) was created by the density of emissions from the on-road, residential, commercial, 319 

and industrial sectors across the urban landscape. The SLV has one of the longest running multi-320 

site urban CO2 monitoring networks in the world, consisting of five sites that began operation in 321 

2001 (Mitchell et al., 2018), which can be compared to the TRAX spatiotemporal averages. 322 

While the broad structure of the urban gradient across the SLV is observable at the fixed sites, 323 

the TRAX observations resolve the spatial structure of mole fraction gradients across the 324 

metropolitan region in much finer detail than is possible from a small number of fixed sites. 325 
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In addition to the broad spatial pattern across the city, there were smaller-scale features that 326 

were visible in the averages. Elevated CO2 mole fractions were found along every road that the 327 

train crosses. On the Red line between the urban center and the University of Utah (2.5 to 6.5 km 328 

along the Red line in Figure 5), the rail tracks were located in the middle of a four-lane road with 329 

heavy automobile traffic (>20,000 vehicles day-1 in 2014 (UDOT, 2017)) and surrounded by 330 

multi-story buildings that act as an urban canyon and could reduce ground level atmospheric 331 

mixing. This combination of factors resulted in the highest CO2 mole fractions we observed 332 

along the TRAX lines. In other areas, the train ran on a dedicated transit corridor that was not 333 

adjacent to tailpipe emissions, was in the vicinity of roads with less traffic, or was surrounded by 334 

shorter buildings, and these factors resulted in lower CO2 mole fractions. 335 

One advantage of using a transit-based observation platform is its ability to make repeated 336 

transects on a regular basis that provides unprecedented temporal coverage for a mobile 337 

platform. With this data we can examine the spatial pattern of CO2 mole fractions during 338 

different seasons (Figure 5b), days of the week (Figure 5c), and hours of the day (Figure 5d). 339 

These comparisons reveal higher mole fractions at night and during the winter months due to 340 

lower planetary boundary layers during these time periods and, during the winter, greater 341 

emissions from combustion of natural gas for home heating (Mitchell et al., 2018; Pataki et al., 342 

2003). Lower mole fractions during the day were caused by greater atmospheric mixing as well 343 

as photosynthetic uptake of CO2 from vegetation. The magnitude of the seasonal and diel cycles 344 

were much larger along the urban corridor where there were greater anthropogenic emissions 345 

than there were at the southwestern end of the Salt Lake Valley at the margin of the urbanized 346 

area (~35 km in Figure 5b). The mole fractions along the urban corridor (10 to 27 km in Figure 347 

5c) were also higher during the week than during the weekend due to greater levels of traffic, but 348 

this difference was not as large in the downtown core of the city (5 to 7.5 km in Figure 5c). 349 

These examples illustrate the rich temporal coverage that is possible with a public-transit based 350 

measurement platform. 351 

 352 

3.1.2. Methane (CH4) 353 

Numerous studies have documented CH4 leaks across urban areas tied to industrial activities, 354 

natural gas infrastructure, and landfills (e.g. (Hopkins et al., 2016; Jackson et al., 2014; Lamb et 355 

al., 2016; McKain et al., 2015). In the SLV, the averaged CH4 mole fractions from available 356 
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transects were characterized by distinct plumes, in contrast to the broad pattern of CO2 (Figure 357 

6). A number of the CH4 plumes are adjacent to industrial sources including natural gas fired 358 

power plants and a brick factory that utilizes a natural gas turbine to fire its furnace, as well as 359 

landfills.  360 

An analysis of CH4 during different hours of the day demonstrates the ability of a public 361 

transit platform to identify intermittent emission sources (Figure 6b).  While the CH4 plume near 362 

the brick factory (marked by an ‘K’ in Figure 6b) and natural gas fired power plant (‘P’ in Figure 363 

6b) along the Red line are present throughout the day, there is one plume (‘X’ in Figure 6b) that 364 

was only present during daytime working hours, indicating a source of methane likely related to 365 

commercial or manufacturing activity. Mobile measurement campaigns that only make a few 366 

passes by any particular source (e.g. using a vehicle (Hopkins et al., 2016)) or that only operate 367 

during certain times of day or on specific days (e.g. (Apte et al., 2017) could miss intermittent 368 

sources such as those that are only present during specific times of the day or those with episodic 369 

day-to-day variability. 370 

 371 

3.2. Air Pollutants  372 

3.2.1. Fine Particulate Matter (PM2.5) 373 

Events when PM2.5 concentrations exceed NAAQS in the SLV are highly episodic, so more 374 

insight can be gained by looking at specific case studies than by examining average conditions 375 

over time until numerous episodes are available to derive a climatology of various episodes (the 376 

three-year record is insufficient at this point).  In January-February 2016 a study was conducted 377 

that examined how meteorological and chemical processes affected wintertime PM2.5 during 378 

persistent cold air pools (PCAPs) (Baasandorj et al., 2017), and the TRAX observations provide 379 

additional insight into the spatial variability during this study. Figure 7 shows several 4-hr PM2.5 380 

averages along the Red line during the 7-15 February 2016 pollution episode, which contained 381 

eight consecutive daily NAAQS exceedances of PM2.5. Near the beginning of this episode on 8 382 

February 2016 a pronounced north-south gradient in PM2.5 was observed along the Red line 383 

(Figure 7a). Meteorological observations from MesoWest stations ((Horel et al., 2002); Figure 384 

1), laser ceilometers, and lidar data from field campaigns (Baasandorj et al., 2017) as well as 385 

stationary air quality sites were utilized determine the cause of this gradient in PM2.5 and 386 

indicated that it resulted from two factors. First, relatively clean and cool drainage flow through 387 
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the gap in the southern mountain foothills and downslope katabatic flows with wind speeds 388 

between 3 and 8 m s-1 was observed at the southern end of the SLV that diluted the pollutants in 389 

those locales (indicated qualitatively with arrows in Figure 7a). Second, a weak northerly flow in 390 

the northern Salt Lake Valley resulting from a lake breeze circulation resulted in a stagnation 391 

zone (Crosman and Horel, 2016) over the northern and central SLV, allowing the PM2.5 392 

concentrations to remain elevated there. A small but distinct plume of ~20 µg m-3 was observed 393 

in the south-central SLV adjacent to a gravel pit, indicated with a ‘G’ in Figure 7a. A week later, 394 

on the afternoon of 14 February 2016, near the end of the pollution episode, the spatial gradient 395 

in PM2.5 had reversed, with PM2.5 concentrations between 20 and 30 µg m-3 higher over the 396 

southern portions of the SLV (Figure 7b). In this case a partial ‘mix-out’ episode (Lareau and 397 

Horel, 2014) had partially removed the cold air and pollution in the Salt Lake Valley, but not in 398 

the Utah Valley.  The stronger cold-air pool associated with colder temperatures over the Utah 399 

Valley to the south resulted in a density-driven flow of cold, polluted air that advected north into 400 

the SLV. Finally, in the evening of 14 February, top-down erosion of the PCAP (Lareau and 401 

Horel, 2014) led to a rapid decrease in PM2.5 on the SLV benches on the north and southern ends 402 

of the TRAX Red line and left a shallow remnant polluted layer in the lowest ~150 m of the SLV 403 

(Figure 7c). Similar meteorological and pollution patterns were observed as part of an intensive 404 

field campaign during a PCAP in February 2017 (Utah DEQ, 2018). 405 

Patterns visible in the TRAX data at other times (but not plotted here) include clean air 406 

drainage out of the surrounding canyons into the SLV and lake breezes that can transport either 407 

clean or polluted air into the city, depending on the composition of the air over the Great Salt 408 

Lake. 409 

In the summer, average TRAX PM2.5 concentrations were well below the NAAQS of 35 µg 410 

m-3 (Figure 8). However studies have shown that adverse health effects can arise from even low 411 

pollutant concentrations (Brunekreef and Holgate, 2002; Di et al., 2017; Franklin et al., 2006) 412 

and near-road exposure to pollutants (Chen et al., 2017; Oakes et al., 2016). The TRAX average 413 

summer observations reveal numerous plumes of PM2.5 associated with some roadways and 414 

several point sources (e.g. a gravel pit, brick factory, and an unidentified source, indicated by a 415 

‘G’, ‘K’, and ‘X’ in Figure 8).   416 

While fine scale location-specific air quality forecasts will remain difficult to provide to the 417 

public, the observations from TRAX, in combination with a sparse network of fixed-site research 418 
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and regulatory instruments and citizen-science network of lower-cost sensors (Kelly et al., 2017), 419 

along with instruments deployed on a news helicopter (Crosman et al., 2017), provide DAQ 420 

forecasters with improved understanding of the complex intra-urban meteorological and 421 

topographical factors that control pollutant concentrations.  422 

 423 

3.2.2. Ozone (O3) 424 

Periods of high summertime O3 are typically enhanced by stagnant high pressure and high 425 

temperature; however, there are also occasional episodic periods of high O3 resulting from 426 

smoke from wildfires and lake breezes (Horel et al., 2016). The spatial patterns from summer-to-427 

summer are similar, so we focus on the summer of 2015 that was investigated as part of the 428 

Great Salt Lake Summer Ozone Study (Blaylock et al., 2016; Horel et al., 2016). The average O3 429 

concentrations from available TRAX transects in the summer of 2015 were 5-10 ppb lower in the 430 

urban corridor compared to the foothills (Figure 9a). This pattern, however, changed throughout 431 

the day with midday concentrations being homogeneous across the city while the depletion in the 432 

urban corridor occurred entirely in the evening and morning hours when residual O3 was 433 

preferentially destroyed by enhanced nocturnal NOx build-up in the urban corridor (Figure 9b). 434 

These distinct spatial patterns could allow for the comparison with spatial patterns in health 435 

impacts from O3 that may lead to advances in understanding of O3-related health risks. In 436 

addition to the broad spatial patterns, areas of high-density traffic routes that are sources of NOx 437 

emissions from vehicles had sharp reductions in O3 from near-field chemical destruction of O3 438 

that occurred throughout the day. These areas of depleted O3 were evident along the freeways 439 

and are discussed in greater detail in the following sections.  440 

 441 

3.2.3. Nitrogen Dioxide (NO2) 442 

The average distribution of NO2 across the SLV showed similar spatial patterns as CO2 (r = 443 

0.83) and a strong anti-correlation with O3 (Figure 10).  The broad pattern shows NO2 444 

concentrations that were highest in the urban core and lowest along the urban periphery. 445 

Localized enhancements were visible along many of the roadways. These spatial patterns can be 446 

more clearly understood in relation to the other species that we measured, and a discussion of 447 

these relationships follows. 448 

 449 
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3.3. O3-NO2-CO2 Relationships 450 

Additional insight and an improved understanding of the factors controlling urban air 451 

composition can be gained by examining the relationships between several species (Figure 11).  452 

First, we discuss how O3 and NO2 are related through atmospheric chemistry; second, we 453 

examine the relationship between NO2 and CO2, which are related through the combustion of 454 

fossil fuels.   455 

The O3-NO2 chemistry is well known (U.S. EPA, 2013), and the strong anti-correlation 456 

between O3 and NO2 (r = -0.96) was a result of titration of O3 by reaction with NO to form NO2 457 

(NO + O3 → NO2). This is particularly evident by examining the shaded regions of Figure 11 458 

where the train cars were in the middle of traffic in the downtown region (A), and crossed I-15, 459 

the major north-south interstate route in the SLV (B, C, and D). These instances reflect the 460 

atmospheric chemistry near highly-traveled roadways, but similar smaller features were observed 461 

near smaller roadways as well. These results, obtained with a single set of instruments, are 462 

similar to what would be expected from a large field campaign examining distance to road 463 

relationships, illustrating the utility of public transit platforms for urban air quality studies. 464 

Future work should add nitric oxide (NO) to the measurement suite to determine NOx (≡ NO + 465 

NO2) and these observations could be used to improve our ability to model pollutants across the 466 

city and thereby improve high-resolution pollution exposure assessments. Understanding these 467 

processes will be important as energy efficiency and adoption of electric vehicles alter emissions 468 

patterns in urban centers. Prior modeling work has shown that future urban NOx emission 469 

reductions will lead to changes in the temporal patterns of urban O3, resulting in higher nighttime 470 

O3 and lower daytime O3 (Pfister et al., 2014), and the TRAX platform is well suited to observe 471 

these changes across an entire urban center in real time. 472 

To explore the relationship between NO2 and CO2, we calculated the excess NO2 and CO2 473 

concentrations by subtracting a qualitative estimate of background conditions (4 ppb NO2 and 474 

405 ppm CO2, slightly below the minimum in the spatial averages in Figure 11) and then 475 

calculating the excess NO2/CO2 (ppb/ppm) ratio. Both NO (which is quickly titrated to NO2 by 476 

O3) and CO2 are co-emitted during the combustion of fossil fuels, but the ratio between them 477 

differs by source sector, fuel type, as well as vehicle speed, weight, age, and other factors (Jung 478 

et al., 2011). The impact of these differences can be most clearly seen by comparing the fine 479 

scale variations in the ratio in the shaded regions A-C in Figure 11. In region A the train was in 480 
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the middle of traffic on surface streets in downtown and the ratio was low. In contrast, in regions 481 

B and C where the train crossed the I-15 interstate with a different vehicle fleet composition 482 

moving at faster speeds, there were small peaks in the ratio. These observations provide useful 483 

targets for future work evaluating vehicle emissions in real world driving conditions and can also 484 

be compared to ratios measured at stationary tower sites during episodic periods of poor air 485 

quality (Bares et al., 2018). 486 

Figure 12 shows an expanded view of the shaded region D from Figure 11 where a large 487 

persistently elevated NO2 plume was seen. A close examination reveals that the NO2 plume had 488 

two sub-peaks. The NO2 peak at ~16.4 km where the Green line crossed I-15 was coincident 489 

with a narrow peak in CO2, and because there was a proportional increase in both species at this 490 

location there was a negligible effect on the excess NO2/CO2 ratio (red shading). Conversely, the 491 

peak centered at ~16.8 km (blue line) is more clearly resolved in the excess NO2/CO2 ratio that 492 

reveals a much larger and broader NO2 plume and suggests that the NOx emissions from the 493 

freeway traffic were small compared to this other source. This second peak was centered over a 494 

Union Pacific rail yard 0.4 km west of the I-15 freeway that uses diesel powered switchyard 495 

locomotives to move rail cars around the rail yard (the location of the rail yard can be more 496 

clearly seen in the Google Earth KMZ supplementary materials). These switchyard locomotives 497 

comply with older (Tier 0 or 0+) locomotive emission standards (Sowards, G., personal 498 

communication, 2017) that have a high NOx/CO2 emission ratio (U.S. EPA, 2016). The north-499 

south extent of the excess NO2/CO2 ratio can be observed along the Red line for ~6 km (between 500 

~8-14 km, Figure 11). Since these values were averaged over an extended time period, it is 501 

expected that day-to-day wind conditions would spread this plume of higher NO2 in different 502 

directions across the SLV. Upgrading the switchyard locomotives to newer models (Tier 4) 503 

would reduce NOx emissions by 90% and may be a cost-effective way to reduce emissions of 504 

this air pollutant (U.S. EPA, 2016). 505 

These relationships illustrate the variety of impacts that fossil fuel combustion has on the 506 

composition of urban air. By measuring both GHGs and air pollutants, it will be possible to gain 507 

a greater understanding of the complex relationships between these species during different 508 

seasons and times of day as a result of emissions from anthropogenic and natural (e.g. biogenic) 509 

sources as well as secondary atmospheric chemical reactions. As efforts to improve air quality or 510 

reduce GHG emissions lead to lower emissions in urban centers, measurement platforms that 511 
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have the ability to monitor these species across space and time will be able to track the evolution 512 

of urban air composition across cities in a unique way.   513 

 514 

3.4. Future Directions  515 

We continue to collect data in real-time from the TRAX platforms. The long-term data 516 

archive, combined with other research and regulatory air quality observational networks, provide 517 

the opportunity to establish the Salt Lake Valley as an interdisciplinary laboratory for continued 518 

health science and air quality research that would benefit the public, urban planners, policy 519 

makers, and air quality forecasters. The research-grade instrumentation installed on the light rail 520 

train also has potential future value as a tethering system for calibrating lower-cost air quality 521 

sensors spatially distributed along the rail line. Utilizing public transit for urban atmospheric 522 

monitoring also provides a proof of concept that could be implemented in other urban regions 523 

throughout the world.  524 

Disseminating real-time public transit air quality observations can be a powerful tool for 525 

science communication and could potentially boost public transit ridership. By taking public 526 

transit, customers can contribute to air quality monitoring while also reducing their own 527 

emissions and therefore improving air quality. Since ridership depends on factors such as 528 

satisfaction, perceived value, and personal involvement (Lai and Chen, 2011), the partnership 529 

established here with the public transit authority could increase the perceived value of public 530 

transit and increase ridership. 531 

The repetitive nature of the TRAX transects gives insight into many processes that control 532 

the urban atmosphere and its linkages with human health and socioeconomic activities. The 533 

spatial extent of the TRAX rail network provides an excellent framework for these data to be 534 

used in combination with fixed observations sites to evaluate urban emission modeling and 535 

emission inventories of multiple species. Measurements of CO2 could be used to monitor urban 536 

fossil fuel emissions and evaluate progress towards emission reduction targets such as Salt Lake 537 

City’s goal of reducing greenhouse gas emissions by 50% in 2030 and 80% by 2040 compared to 538 

a baseline in 2009 (Salt Lake City Corporation, 2016). For CH4, examining and modeling the 539 

temporal signature of emissions from point sources could lead to new insight into the processes 540 

causing fugitive emissions (i.e. if they are associated with leaking infrastructure or if they are 541 

associated with operations). Integrating air quality observations from available sources could be 542 
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used to improve atmospheric models and estimates of pollutant exposure across urban areas and 543 

investigate the relationship with demographic characteristics and environmental justice issues. 544 

These observations and models could then be tied to spatially explicit human health impacts to 545 

improve our understanding of dose-response relationships at fine spatial scales across urban 546 

areas, which is relevant for public stakeholders and policymakers. These observations could also 547 

be used within a multi-species framework that leverages different emission patterns to reduce 548 

uncertainties in atmospheric transport, particularly during persistent cold air pools that are 549 

challenging to model and result in frequent violation of NAAQS. Also, the spatial footprint of 550 

the TRAX network (~25 km North-South and ~15 km East-West) may be suitable for ground-551 

based evaluation of remote sensing instruments (i.e. satellite and aircraft) that are increasing their 552 

resolution to understand urban emissions and other processes with fine spatial variability. These 553 

data could also be used to compare and evaluate and calibrate high-density networks of low-cost 554 

instruments, such as the Purple Air network of low-cost air quality sensors (Kelly et al., 2017). 555 

Improving our understanding of urban GHG emissions and air pollutants will give policy makers 556 

vital information that will enable them to plan for how future urban growth will affect emissions 557 

and air quality. Finally, the real-time data can be used directly by the public to make informed 558 

decisions about their personal exposure to pollutants during their daily activities (e.g. recreation), 559 

and social scientists could study how access to spatially explicit real-time air quality information 560 

affects behavior.  561 

While this initial study utilized only two light-rail train cars, it demonstrates the potential for 562 

leveraging public transit vehicles as a monitoring platform. This measurement strategy provides 563 

a cost-effective way to obtain spatial and temporal coverage across urban areas where GHG 564 

emissions and air quality health impacts are concentrated. Other modes of public transit (e.g. 565 

electric buses) could also be developed to expand this measurement strategy to other cities to 566 

better understand air quality across urban areas worldwide.  567 

 568 
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5. Tables 582 

Table 1 

 Measurement equipment deployed on TRAX train cars. 

Instrument Species Sample 

rate 

Measurement 

uncertainty 

TRAX 

Train car 

Met One Instruments E-Sampler PM2.5 1 min. 1 µg m-3 1 

Met One Instruments ES-642 Remote Dust Monitor PM2.5 1 sec. 1 µg m-3 2 

2B Technologies Model 205 Ozone Monitor O3 2 sec. 2% 1 and 2 

Los Gatos Research Ultra-portable Greenhouse Gas 

Analyzer 

CO2 

CH4 

H2O 

1 sec. 0.3 ppm CO2 

2 ppb CH4 

100 ppm H2O 

1 

Los Gatos Research NO2 Analyzer NO2 1 sec. 0.05 ppb 2 

 583 
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6. Figures 585 

 586 

 

Figure 1. The TRAX Red, Green, and Blue train lines in the Salt Lake Valley (SLV). The University 

of Utah greenhouse gas monitoring network (blue triangles), research grade air quality stations 

(yellow squares), surface weather stations courtesy of MesoWest (black dots (Horel et al., 2002)), and 

the Utah Division of Air Quality’s Hawthorne site (cyan star 2 km east of where the Green and Red 

lines overlap) are also shown. The population density is superimposed in brown shading, and the inset 

shows the location of the SLV as a red box in the western U.S. 

 587 
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Figure 2. Temporal data coverage by species measured (top) and by transect count (bottom).  

 590 

 591 
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Figure 3. Example of an empirical determination of the time lag due to the amount of time it 

takes for a parcel of air to travel the length of the inlet tubing to the instrument. In the raw 

data, without a lag time applied to the data, a persistent feature in the CH4 measurements along 

the Red TRAX line was shifted north (south) of the central location when the train was 

traveling northbound (southbound) (A). When a time lag was applied to the data (in this case a 

9-second lag) the peak occurred in the same location when the northbound and southbound 

data were averaged (B).  

 593 

 594 

  595 



25 

 

 596 

 

Figure 4. Comparisons of TRAX measurements against measurements made at stationary 

sites. The top row (panels A-C) shows comparisons of air pollutants PM2.5, O3, and NO2 

against the Utah Division of Air Quality Hawthorne site (cyan star in Figure 1) while the 

bottom row (panels D and E) shows comparisons of greenhouse gases CO2 and CH4 against 

the UOU site (the northeastern most blue triangle adjacent to the Red line in Figure 1).  
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Figure 5. Spatially and temporally averaged carbon dioxide (CO2) in the SLV between 

December 2014 and April 2017 along the Red and Green TRAX train lines (A). The lower 

panels show seasonal (B), day of week (C), and diel (D) averages, as compared to the overall 

average that is shown in panel A (the overall average is indicated by the black line in panels B-

D). Winter (summer) months were averaged over October-March (April-August). The location 

of the University of Utah and the UOU stationary measurement site on the northeastern 

foothills of the SLV is indicated with a red ‘U’. Also, the location where the Red line crosses 

the I-15 interstate freeway, and where it passes next to a brick factory are indicated with an I-

15 placard and a ‘K’, respectively.  
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Figure 6. Spatially and temporally averaged methane (CH4) in the SLV between December 

2014 and April 2017 (A) and average concentrations during 4-hour time windows along the 

Red line (B). The overall average (black line) in B is the same as the Red train line data shown 

in A. The letters in both panels indicate the locations of an intermittent plume from an 

unknown source (X), a natural gas power plant (P), a brick factory that uses a natural gas fired 

kiln (K), and a landfill (L). 
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Figure 7. Case study of the PM2.5 evolution during a typical cold pool event in the SLV. Panels 

A-C show the spatial pattern of PM2.5 during 4-hour time slices. The ‘G’ in panel A indicates 

the location of a gravel pit that may have contributed to the isolated plume of PM2.5. 
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 608 

 

Figure 8. PM2.5 averaged over the summer of 2016 (May through September). The ‘G’, ‘K’, 

and ‘X’ indicate the locations of the gravel pit shown in Figure 7a, the brick factory shown in 

Figure 5 and Figure 6, and an unidentified PM2.5 source, respectively. 
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Figure 9. The ozone (O3) average during the summer season from May to September 2015 in 

the SLV (A) and average concentrations during 4-hour time windows along the Red train line 

(B). The overall average (black line) in B is the same as the Red line data shown in A. 
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Figure 10. The nitrogen dioxide (NO2) average over one year from June 2016 to June 2017.   
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Figure 11. Temporally averaged O3, NO2, CO2 and the excess NO2/CO2 ratio along both of the 

TRAX lines. O3 and NO2 were measured on TRAX 2 while CO2 was measured on TRAX 1, 

however since they consist of >1 year of data, the averages can be compared to each other. 

The yellow shaded areas indicate where the TRAX line is in the middle of a roadway near 

downtown (A), and crosses I-15 on the Red line (B) and on the Green line (C and D). The 

green shading indicates where the Red and Green train lines overlap each other. 
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Figure 12. Relationships between species illustrating sources of NO2 and CO2 along a 

subsection of the Green line. The Union Pacific rail yard and I-15 interstate highway are 

indicated with a blue line and red shading respectively in the left panel and with icons in both 

the left and right panels. The scale in the left panels corresponds to the shading in the right 

panels. Note that these Google Earth images are looking northwest to see the Union Pacific 

rail yard that is just south of the TRAX rail line, whereas the prior Google Earth images were 

looking southeast. 
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